Using prey densities to estimate the potential size of reintroduced populations of Eurasian lynx

David A. Hetherington*, Martyn L. Gorman

Department of Zoology, School of Biological Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK

ABSTRACT

In previous centuries human activities had a profound effect on the distribution of Eurasian lynx (Lynx lynx) in Europe. The species has since been reintroduced to several areas but still much former range remains unoccupied. A relatively poor coloniser, it is likely that further reintroductions will be required to restore the species to potentially suitable areas. However, in the human-modified landscapes of Europe, where extensive wooded habitats are often fragmented, it is important to assess the potential lynx population size that could be supported in the available habitat. A previous study identified two networks of potential lynx habitat in Scotland. The present study further explores the feasibility of reintroducing lynx to Scotland by estimating the potential population size for the identified habitat by considering the availability of prey. An examination of lynx and wild ungulate densities from four areas in Europe, revealed a highly significant relationship between lynx density and the density of ungulate biomass. Based on the biomass represented by the densities of roe, red, sika and fallow deer occurring in two potential lynx habitat networks in Scotland, it was predicted that habitat in the Highlands could support 2.63 lynx 100 km$^{-2}$, while the Southern Uplands could support 0.83 lynx 100 km$^{-2}$. Applied to the amount of identified habitat, it is estimated that a Highlands habitat network could support around 400 lynx, and a Southern Uplands network, around 50. Scotland could support a large population of Eurasian lynx, which at current estimates, would be the fourth largest in Europe.

1. Introduction

The Eurasian lynx (Lynx lynx) is thought to have become extinct in Britain during the medieval period (Hetherington et al., 2006). As an ambush hunter feeding mainly on small and medium-sized, woodland deer, the lynx was deprived of both its prey and the means with which to hunt, when forest habitat was cleared on a large scale and deer populations were overexploited by humans for food (Hetherington et al., 2006). Since then, reintroductions coupled with re-colonisation, have seen the roe (Capreolus capreolus) and red deer (Cervus elaphus) recoup much of their former range, aided by large-scale reafforestation (Staines, 1998; Ward, 2005). Furthermore, non-native deer species have been introduced and, in most cases, now occupy large areas of Britain (Ward, 2005). However, over-grazing and over-browsing by deer can create problems for forestry, agriculture and nature conservation (Calder, 1994; SNH, 1994; Putman and Moore, 1998; Gill et al., 2000; Fuller and Gill, 2001; McLean, 2001).

Increases in forest cover and wild ungulate populations, coupled with more positive attitudes towards large carnivores, have allowed the lynx to recover lost range elsewhere in Europe in recent decades (Breitenmoser, 1998). Although
the distribution of the wolf (Canis lupus) is recovering in Europe by way of natural recolonisation (Poulle et al., 1997; Lin- nell, 2004), the weaker dispersal capabilities of lynx have resulted in only modest natural recolonisation, and its reoc- currence in several areas of central and western Europe is due instead to reintroduction projects (von Arx et al., 2004). The active restoration of the Eurasian lynx is encouraged by international treaties such as the Bern Convention (1979) and the Rio Convention (1992), while the European Union’s Habitats and Species Directive 92/43, obliges member states to study the desirability of re-introducing the species. The restoration of lynx to Britain, in particular Scotland, has been discussed in recent years (Dennis, 1995, 1998, 2003; Kitchener, 1997, 1998; Yalden, 1999; Macdonald and Tattersall, 2001; Wilson, 2004; Hetherington et al., 2006). Furthermore, patches of potential lynx habitat in Scotland and potential movement corridors between them have been identified using a GIS (Hetherington, 2005).

The IUCN Guidelines on Reintroductions (IUCN, 1998) state that the factors responsible for a species’ extinction should no longer be operating if it is to be considered for reintroduction. As the decline in deer populations is likely to have been a major factor in the extinction of lynx in Britain, then it is essential to assess the availability of suitable prey in the modern landscape for a reintroduced lynx population. Furthermore, in order to determine if Scotland could support a viable Eurasian lynx population, then the density of lynx, and thus the size of the potential population of lynx that could be supported by the identified habitat, must be assessed.

The availability of prey has been identified as a key determinant of carnivore density (Karanth and Nichols, 1998; Fuller and Sievert, 2001; Carbone and Gittleman, 2002; Karanth et al., 2004), including that of Eurasian lynx (Breitenmoser and Haller, 1993; Breitenmoser-Würsten et al., 2001; Herfindal et al., 2005). Furthermore, prey density has been used to predict the potential size of recolonising or reintroduced wolf populations in the United States (Mladenoff and Sickley, 1993, 1998; Yalden, 1999; Macdonald and Tattersall, 2001; Paquet et al., 2001).

Both the lack and fragmentation of forested habitat have been identified as constraints on the ability of a landscape to support populations of Eurasian lynx (Kramer-Schadt et al., 2005; Niedzialkowska et al., 2006). In a previous study, Hetherington (2005) identified areas of potential lynx habitat in Scotland and concluded that two main networks of interconnected habitat patches existed, one in the Highlands, and a smaller one in the Southern Uplands. However, in order to arrive at a meaningful estimate of the number of lynx that could be supported by the identified habitat, the availability of prey in Scotland must be considered. This analysis is restricted to just deer and does not include other potential wild prey, because wild ungulates, such as deer, contribute the overwhelming majority of prey biomass consumed by lynx in environments where the two co-exist (Birkeland and Myrbør, 1980; Breitenmoser and Haller, 1987; Jedrzejewski et al., 1993; Okarma et al., 1997; Sunde and Kvam, 1997; Weber and Weissbrodt, 1999; Sunde et al., 2000; Jobin et al., 2000). Firstly, we quantify the relationship between lynx and prey densities in various parts of Europe and use the relationship to estimate the density of lynx that could be supported in Scotland, based on available prey. Secondly, predicted lynx densities are used to estimate the number of lynx that could be supported in identified potential habitat in Scotland.

2. Methods and materials

Lynx and ungulate density data were available from the literature from four areas of Europe: Central Norway, the Swiss Jura, the Swiss Alps and Bialowieza Forest, Poland (Table 1).

<table>
<thead>
<tr>
<th>Source area</th>
<th>Ungulate density (km²)</th>
<th>Ungulates (km²)</th>
<th>Ungulate biomass (kg km²)</th>
<th>Lynx 100 km²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Norway</td>
<td>0.2 roe; 1.6 reindeer; 0.8 sheep</td>
<td>2.6</td>
<td>142</td>
<td>0.3</td>
</tr>
<tr>
<td>Swiss Jura</td>
<td>7.2 roe; 1.6 chamois</td>
<td>8.8</td>
<td>192</td>
<td>1.0</td>
</tr>
<tr>
<td>Swiss Alps</td>
<td>7.7 roe; 5.0 chamois</td>
<td>12.7</td>
<td>289</td>
<td>1.7</td>
</tr>
<tr>
<td>Bialowieza, Poland</td>
<td>4.7 roe; 4.7 red deer</td>
<td>9.4</td>
<td>517</td>
<td>2.0</td>
</tr>
<tr>
<td>Scottish Highlands</td>
<td>7.4 roe; 3.1 red deer; 1.6 sika, 0.1 fallow</td>
<td>12.2</td>
<td>453</td>
<td>–</td>
</tr>
<tr>
<td>Scottish S. Uplands</td>
<td>5.5 roe; 0.9 red deer; 0.1 fallow</td>
<td>6.5</td>
<td>183</td>
<td>–</td>
</tr>
</tbody>
</table>

(a) Sunde et al. (2000), (b) Jobin (1998) (cited in Jobin et al. (2000)), (c) Breitenmoser and Haller (1987), (d) Jedrzejewski et al. (1993), (e) D. Campbell, Strath Cauaidh Ltd., (pers. comm.), (f) Knutsen and Kjørstad (1996), (g) Breitenmoser et al. (1993), (h) Haller and Breitenmoser (1986), (i) Okarma et al. (1997).
were estimated at between 0.06 and 0.20 km\(^2\) from hunting bags in the winter of 1995/96 (Sunde et al., 2000), but the upper margin was used here as roe deer numbers are often underestimated due to the species’ elusiveness as shown by Andersen (1953). Semi-domesticated reindeer and sheep densities were taken from husbandry statistics (Sunde et al., 2000). Roe and red deer densities from Białowieża Forest were estimated from drive censuses conducted during January–March 1991 (Jedrzejewski et al., 1993).

Despite not being a wild ungulate, the free-ranging, forest-grazed sheep of Central Norway were included. There, all lynx, especially males, are thought to feed on sheep, since they are widespread and relatively numerous in lynx habitat (Odden et al., 2002). However, sheep are grazed in forest only for 3 and a half months during the summer and are only vulnerable to predation by lynx during this time. To reflect this seasonal availability, a sheep density figure for central Norway was adopted which equated to 30% of the reported density of 2.5 km\(^2\) (Sunde et al., 2000).

Deer are widespread in Scotland (Fig. 1), and most of the potential habitat patches identified in Hetherington (2005) support at least two species. Roe deer are particularly widespread, occurring in all habitat patches identified by Hetherington (2005), and would probably be the main ungulate prey for the lynx in much of Scotland, like they are throughout most of the range of the Eurasian lynx (Jedrzejewski et al., 1993). There is evidence, however, to suggest that roe deer in Scotland suffer from interspecific competition with red and sika deer (Cervus nippon), so that in areas where roe are less common, often sika and red deer are more numerous (Chadwick et al., 1996; Latham et al., 1996). There is much evidence, particularly from central and eastern Europe, that red deer are routinely hunted by lynx (Okarma, 1984; Gossow and Honsig-Erlenburg, 1986; Jedrzejewski et al., 1993; Červeny and Bufka, 1996; Hell and Slámačka, 1996). Lynx are highly selective when hunting red deer, killing predominantly calves and no stags (Okarma et al., 1997). Weights of forest red deer in Scotland, although greater than those encountered in

Fig. 1 – Expansion of the distribution of the four most numerous deer species in Scotland 1967–2000. The spatial scale is determined by 10 km squares. From Warren (2002) with permission. Original data from the British Deer Society.
moorland environments, are markedly lower than those found in Polish forests (Dzieciołowski, 1970; Staines et al., in press), suggesting that lynx could prey on red deer juveniles and hinds inhabiting Scottish woodland. Both fallow (Dama dama) and sika deer are considerably smaller than red deer, and all genders and life stages of these two species fall within the capabilities of a hunting lynx, and indeed are killed by lynx in parts of their range (Filinov, 1989; Heptner and Sludskii, 1972; Angst, 2001).

Deer density data for Scotland was drawn from estimates derived at 54 monitoring units within Forestry Commission-owned sites across Scotland. Dung counts were conducted by Strath Caucauld Ltd. during the winters and springs of 2001-2004 and provided density estimates of roe, red, sika and fallow deer. Twelve of the monitoring units were located in habitat patches identified by Hetherington (2005) as being in the Southern Uplands network. The remaining 42 units were located in the Highlands network of habitat patches. The mean value of ungulate density for both the Southern Uplands and Highlands was calculated and used to predict the potential lynx densities for the two areas.

The density represented by any gender or age class of ungulate thought to be unsuitable lynx prey, was removed from the ungulate communities. Lynx hunt both genders and all life stages of roe deer, chamois, reindeer and sheep, whereas they avoid red deer stags (Jedrzejewski et al., 1993). The contributions of red deer stags to the red deer populations of Białowieża, the Scottish Highlands and the Southern Uplands, were therefore not included in the total ungulate densities for these areas in the present analysis. Stags were estimated to form 27% of red deer living in Białowieża Forest (Jedrzejewski et al., 1993) and 28% in Scotland (Fergusson, 2002).

Ungulate densities were converted into biomass km⁻² to standardise ungulate communities composed of different species. For each species, representative weights were estimated from average weights for both genders as well as juveniles in a pre-breeding population, so that total biomass of the ungulate community could be calculated. Figures for ungulate biomass per unit area in the four European areas and the two Scottish areas are shown in Table 1. In Scotland, the weights of roe deer are known to vary between different parts of the country according to the productivity of the environment (I. Fergusson, pers. comm.). However, for this study a figure of 20 kg was used, based on average adult weights of 22.3 kg for does and 23.9 kg for bucks (Staines and Ratcliffe, 1991). For semi-domesticated reindeer, 65 kg was used, based on a herd composition of 11% male, 65% female and 24% calves (Pedersen et al., 1999), with an average, adult female weight of 66.5 kg in winter in Central Norway (Nybakk et al., 2002). The average weight of chamois varies between the Swiss Jura and Swiss Alps with those in the Jura being slightly heavier (A. Jobin-Molinari, pers. comm.). Therefore, 30 kg was used for the Jura and 27 kg for the Alps. As before, the share of the ungulate community represented by red deer stags was not considered in the analysis. Polish red deer are heavier than Scottish forest red deer, and based on weights given by Staines et al. (in press) and Dzieciołowski (1970), 90 kg was considered representative of Polish hinds and calves, while 80 kg was more descriptive of Scottish hinds and calves living in forests. The representative weight for sheep in central Norway is 43 kg, and was based on typical ewe weights for the Spæselsheep and Dala breeds of 65 and 90 kg, respectively (Hansen et al., 2001), and with lamb weights in mid-summer typically around 25 kg (G. Steinheim, pers. comm.). The proportion of sheep grazed in the forest was assumed to be similar to that in northern Norway, where 63% of grazed sheep were lambs (Warren et al., 2001). The representative weights used for sika and fallow deer were 35 and 40 kg, respectively, based on Scottish animals (Ratcliffe, 1991; A. MacGugan, pers. comm.).

3. Results

There was no significant linear relationship between lynx density and ungulate density \([F = 1.41, \ n = 4, \ p = 0.357, \ R^2(adj.) = 0.121] \). There was, however, a strong and significant relationship between lynx density and log transformed ungulate biomass \([F = 852.12, \ n = 4, \ p = 0.001, \ R^2(adj.) = 0.996] \) (Fig. 2). The equation describing this relationship \([y = 4.58 \log_{10}(x) − 9.53, \] \(\) where \(x \) is ungulate biomass in kg km⁻² and \(y \) the supported lynx density in numbers of lynx 100 km⁻²², can be used to predict the density of lynx that could potentially be supported by ungulate biomass in Scotland (Fig. 3). The average ungulate biomass in the Highlands, 453 kg km⁻²², predicts a density of 2.63 lynx 100 km⁻². The average biomass in the Southern Highlands, 183 kg km⁻²², predicts 0.83 lynx 100 km⁻² (95% confidence limits: 0.34) and that of the Southern Uplands, 183 kg km⁻²², predicts 0.83 lynx 100 km⁻² (95% confidence limits: 0.31). When applied to lynx habitat patches previously identified in the Highlands and Southern Uplands (Hetherington, 2005), these estimated densities suggest a potential total population of 394 ± 51 lynx for the Highlands, and 51 ± 19 for the Southern Uplands and Kielder Forest, giving a total potential lynx population for Scotland and cross border forest areas of 445 ± 70 lynx (Table 2).

4. Discussion

Despite a small sample size of four areas for which both lynx and ungulate density data could be found, a very significant relationship exists between available ungulate biomass and lynx density in Europe. Biological and methodological factors can confound the accurate prediction of predator densities based on the measurement of prey availability. From a methodological point of view, inaccuracies may arise in the data...
were compiled using a variety of methods such as drive cen-
tracking along transects, lynx density data were estimated
as being more accurate and less likely to overestimate ani-
methodological differences in data collection and inter-
interpretation (Fuller and Sievert, 2001). Smallwood and Schone-
cautions that studies which set out to estimate mammalian carnivore densities, often extrapolate predator
densities calculated from small, well-studied areas over much
larger areas, and thus give no consideration to spatial vari-
ation in density.
There are limitations to the approach taken by the present
analysis to estimate the lynx densities that could be sup-
ported in Scotland. One such limitation is the reliance on den-
sity data for both lynx and ungulates, which are themselves,
estimates. Density data derived from sophisticated methods
such as radiotelemetry and camera trapping, are regarded as
being more accurate and less likely to overestimate ani-
mals (von Arx et al., 2004). With the exception of the data
from Central Norway, which were estimated from snow-
tracking along transects, lynx density data were estimated
from radio-telemetry, and should therefore give a reasonably
accurate picture of lynx density. Although the ungulate data
were compiled using a variety of methods such as drive cen-
sus, dung counting, husbandry statistics and extrapolation
from hunting statistics, and there is therefore potential for
inaccuracy and disparity between methods, these were the
best data available and it was felt they were appropriate for
use in an indicative analysis at the national level.
The potential lynx densities estimated by the analysis do
not represent the biological carrying capacity for lynx in Scot-
land, because all four of the lynx populations used to examine
the relationship between ungulates and lynx are exposed to
human processes which may affect lynx density. The Norwe-
gian lynx population experiences both legal quota hunting
and poaching (Sunde et al., 1998; Andrén et al., 2006), while
the protected lynx population of Białowieża Forest suffers
considerable levels of poaching (Jedrzejewski et al., 1996).
The two Swiss populations, occurring as they do in the most
densely populated landscapes under consideration, experi-
ence poaching, as well as frequent road traffic collisions,
which can be a significant source of subadult mortality
(Schmidt-Posthaus et al., 2002). Compared to a range of other
carnivore species, the Eurasian lynx was found to be quite
rare relative to the estimated prey biomass availability, and
human processes such as poaching were suggested as possi-
bable reasons for this (Carbone and Gittleman, 2002). Given
that potential lynx habitat patches identified in Scotland also lie in
human-modified landscapes, it is likely that a lynx popula-
tion in Scotland would also be exposed to human processes,
which could potentially reduce lynx density below that of
the biological carrying capacity. Whether these potential hu-
man impacts would be greater or lesser than those experi-
enced by lynx populations elsewhere, is unknown.
In reality, the true lynx densities that could be supported
in Scotland may be higher or lower than the figures suggested
by the analysis, either because of statistical or environmental
reasons. The Scottish deer density data came from 54 state-
owned woodlands managed by the Forestry Commission,
and were chosen because they came from a large dataset cov-
ering all areas of Scotland, and were compiled with a stan-
dardised methodology. However, because deer populations are
carefully managed in Forestry Commission woodlands to pro-
tect the timber resource within them, it is likely that many of
these woodlands support lower deer densities than other, pri-
vately owned forests in Scotland. Average deer densities in
both the Southern Uplands and Highlands may therefore be
higher than the averages used in the analysis, resulting in
an underestimation of the number of lynx that could be sup-
ported in the two areas.
In addition to ungulates, mountain hares (Lepus timidus)
and brown hares (Lepus europaeus) frequently contribute to lynx
diet in Europe (Birkeland and Myrberget, 1980; Breitenmoser
and Haller, 1993; Jedrzejewski et al., 1993; Pulliainen et al.,

Table 2 – Number of lynx that could be supported in Highlands and Southern Uplands based on habitat availability and prey biomass

<table>
<thead>
<tr>
<th>Lynx density (100 km⁻²)</th>
<th>Area of habitat (km²)</th>
<th>Number of lynx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highlands</td>
<td>2.63</td>
<td>14 994.4</td>
</tr>
<tr>
<td>Southern Uplands</td>
<td>0.83</td>
<td>6144.4</td>
</tr>
<tr>
<td>Total</td>
<td>–</td>
<td>21 138.8</td>
</tr>
</tbody>
</table>

Having identified a strong relationship between the density of wild ungulate biomass and lynx densities in Europe, the findings of this study could be applied, in order to determine the potential size of lynx populations that could be supported by available habitat, when considering the feasibility of future Eurasian lynx reintroduction programmes. It is clear that lynx prey species are abundant and widespread in Scotland, and that all habitat patches identified in Hetherington (2005) support potential prey in sufficient quantities to support a lynx population. Therefore, one of the processes thought to have contributed to the extirpation of lynx in Britain, the decline of deer populations, is no longer operating in modern Scotland. Given that only three of the nine lynx populations in Europe are currently larger than a potential Scottish lynx population of over 400 individuals (sensu von Arx et al., 2004), Scotland could support a large and significant population of Eurasian lynx. Further research, however, is required to examine if a population of this size, stemming from a reintroduction, would be viable in the long-term. Furthermore, as with any large carnivore reintroduction project, non-biological, human dimensional aspects must also be addressed if lynx reintroduction in Scotland is to have a successful outcome.

Acknowledgements

DAH was funded by the Highland Foundation for Wildlife. The authors are grateful to Douglas Campbell of Strath Caulaidh Ltd. for providing deer density data and to Krzysztof Schmidt, Colin MacLeod and two anonymous reviewers for providing helpful comments on an earlier version of the manuscript.

